
The Laravel
Security Checklist

INTRODUCTION
Damn, but security is hard.

It’s not always obvious what needs doing, and the payoffs of good security are at best
obscure. Who is surprised when it falls off our priority lists?

We’d like to offer a little help if you don’t mind. And by « help » we don’t mean « pitch
you our product »—we genuinely mean it.

Sqreen’s mission is to empower engineers to build secure web applications. Laravel already
comes with great out-of-the-box security features but it’s often not enough. We’ve put
our security knowledge to work in compiling an actionable list of best practices to help
you get a grip on your security priorities. It’s all on the following pages. 

We hope you find it useful. If you do, share it with your network. And if you don’t, please
take to Twitter to complain loudly—it’s the best way to get our attention.

The Sqreen Team
@SqreenIO
hey@sqreen.com

!1

https://www.sqreen.com/?utm_medium=social-owned&utm_source=whitepaper&utm_campaign=Whitepaper%20-%20Laravel%20Security%20Checklist
https://twitter.com/SqreenIO
mailto:hey@sqreen.com

CODE

✔ Use PHP 7!
Laravel 5.5 requires PHP 7 or above. PHP 7 includes a range of built-in security-specific
improvements (such as libsodium in PHP 7.2) and deprecates older, insecure features and
functionality. As a result, it is far easier to create more secure applications with PHP 7,
than any previous version of PHP. Use it whenever possible.

Read more:
• Deprecated features in PHP 7.0.x
• Deprecated features in PHP 7.1.x
• Deprecated features in PHP 7.2.x
• Deprecated features in PHP 7.3.x
• Migrating a PHP 5 App to PHP 7

✔ Make sure you use the latest version of Laravel
New vulnerabilities appear on a regular basis. Make sure you use the latest version of
Laravel for your projects. Versions up to 5.6.29 have known SQL injection or code
execution vulnerabilities.

Read more:
• Read about new Laravel CVEs

• Upgrade guides

• Shift

✔ Use a SAST
• A SAST is a Static Application Security Tester (or testing service). A SAST scans

source code looking for vulnerable code or potentially vulnerable code. Pre-
production tools come with a number of false positives and false negatives, but still
add some value. 

!2

https://secure.php.net/manual/de/migration70.deprecated.php
https://secure.php.net/manual/de/migration71.deprecated.php
https://secure.php.net/manual/de/migration72.deprecated.php
https://secure.php.net/manual/de/migration73.deprecated.php
https://auth0.com/blog/migrating-a-php5-app-to-php7-part-two/
https://www.cvedetails.com/vulnerability-list/vendor_id-16542/Laravel.html
https://laravel.com/docs/5.6/upgrade
https://laravelshift.com/

Read more:
• 11 Best PHP Code Security Scanners to Find Vulnerabilities

• SAST, DAST, and RASP: A guide to the new security alphabet soup

✔ Use a DAST
A DAST is a Dynamic Application Security Tester (or testing service). A DAST searches
for weaknesses and vulnerabilities in running applications. Pre-production tools come with
a number of false positives and false negatives, but still add some value. 

Read more:
• Common Approaches to Automated Application Security Testing - SAST and

DAST
• Acunetix

✔ Filter and Validate All Data
Laravel's Eloquent ORM uses PDO parameter binding to limit SQL injections. But
Laravel also offers other ways to craft SQL queries. Regardless of where the data comes
from, whether that’s a configuration file, server environment, GET and POST, or
anywhere else, do not trust it. Filter and validate it!
 
Read more:

• Validation in Laravel

✔ Avoid using Raw Queries
In the item above, we saw the importance of validation. But we really recommend not to
use raw SQL queries all-together. Using raw queries just increases the risk for SQL
injection vulnerabilities.
 
Read more:

• Queries in Laravel

!3

https://geekflare.com/php-security-scanner/
https://blog.sqreen.io/sast-dast-rasp/
https://www.securityweek.com/common-approaches-automated-application-security-testing-sast-and-dast
https://www.securityweek.com/common-approaches-automated-application-security-testing-sast-and-dast
https://www.acunetix.com/
https://laravel.com/docs/5.6/validation
https://laravel.com/docs/5.5/queries

✔ Whitelist, Never Blacklist
Never attempt to filter out unacceptable input. Just filter for only what is acceptable. To
attempt to filter out anything that is unacceptable leads to unnecessarily complicated
code, which likely leads to defects and security flaws.

PHP Security - Never Blacklist; Only Whitelist

✔ Use Parameterized Queries
This should come out of the box if you’re using Laravel’s native features. But to avoid SQL
injection attacks, never concatenate or interpolate SQL strings with external data. Use
parameterized queries instead and prepared statements. These can be used with vendor-
specific libraries or by using PDO.
 
Read more:

• Prepared statements and stored procedures in PDO
• Mysqli Prepared Statements
• The PostgreSQL pg_query_params function

✔ Use Eloquent ORM
Laravel comes embedded with a great ORM called Eloquent ORM. It is scrutinized and
tested by a community of security-conscious developers.
 
Read more:

• Eloquent ORM Docs

✔ Use Laravel’s built-in encryption
Laravel comes with a built-in encryption mechanism and we highly recommend you use
that one instead of building your own. As of PHP 7.2, older encryption libraries have
been deprecated, such as Mcrypt. However, PHP 7.2 supports the far better Libsodium
library instead. If you want to use a different encryption library, take a look at Libsodium.
 
Read more:

!4

http://phpsecurity.readthedocs.io/en/latest/Input-Validation.html#never-blacklist-only-whitelist
https://secure.php.net/manual/en/pdo.prepared-statements.php
https://secure.php.net/manual/de/mysqli.quickstart.prepared-statements.php
https://secure.php.net/manual/en/function.pg-query-params.php
https://laravel.com/docs/5.0/eloquent

• PHP 7.2: The First Programming Language to Add Modern Cryptography to its
Standard Library

• Libsodium
• Laravel Encryption

✔ Set open_basedir
The `open_basedir` directive limits the files that PHP can access to the filesystem from
the `open_basedir` directory and downward. No files or directories outside of that
directory can be accessed. That way, if malicious users attempt to access sensitive files,
such as `/etc/passwd`, access will be denied.
 
Read more:

• open_basedir configuration directive
• PHP Filesystem Security
• Isolated Execution Environments by DigitalOcean

✔ Make sure permissions on filesystem are limited
PHP scripts should only be able to write in places you need to upload files of specifically
write files. This places should not be anywhere a PHP script can be executed by the
server. Else, it open the way for an attacker to write a PHP file somewhere and to run
arbitrary PHP code.
 
Learn more:

• OWASP filesystem guide
• File visibility on Laravel
• StackOverflow: How to set up File Permissions for Laravel

✔ Perform Strict Type Comparisons
If weak type checking is used, such as with the `==` operator, vulnerabilities can occur due
to the often peculiar ways that PHP converts types. These include 1.14352 being
converted to 1, strings converting to 1, “1is this true” converts to true, and so on. This is
because according to the manual:

!5

https://dev.to/paragonie/php-72-the-first-programming-language-to-add-modern-cryptography-to-its-standard-library
https://dev.to/paragonie/php-72-the-first-programming-language-to-add-modern-cryptography-to-its-standard-library
https://github.com/jedisct1/libsodium-php
https://laravel.com/docs/5.8/encryption
https://secure.php.net/manual/en/ini.core.php#ini.open-basedir
https://secure.php.net/manual/en/security.filesystem.php
https://www.digitalocean.com/community/tutorials/7-security-measures-to-protect-your-servers#isolated-execution-environments
https://www.owasp.org/index.php/File_System
https://laravel.com/docs/5.8/filesystem#storing-files
https://stackoverflow.com/questions/30639174/how-to-set-up-file-permissions-for-laravel-5-and-others

> By default, PHP will coerce values of the wrong type into the expected scalar type if
possible.

Use strict type checking to ensure that when comparing two items that they are of the
same type. And in PHP 7.1, use `declare (strict_types=1);`.
 
Read more:

• PHP 7 type hinting: inconsistencies and pitfalls
• PHP strict typing

✔ Use libxml_disable_entity_loader(true)
To avoid XML External Entity Injections, when working with XML content, use
`libxml_disable_entity_loader` to disable external entity resolution.
 
Read more:

• XML external entity attack
• XML External Entity (XXE) Prevention Cheat Sheet
• libxml_disable_entity_loader
• libxml

✔ Don’t Implement Your Own Crypto
Unless you’re a security expert—and even if you are—never implement your own crypto.
This is a common cause of security errors, as too few eyes have had a chance to review
the code. Instead, use a publicly reviewed, critiqued, and tested library, such as Libsodium
in PHP 7.2 or Laravel’s built-in encryption.
 
Read more:

• Why is writing your own encryption discouraged?
• Why shouldn’t we roll our own (cryptography)?
• Why You Don’t Roll Your Own Crypto

!6

http://web-techno.net/typing-with-php-7-what-you-shouldnt-do/
https://secure.php.net/manual/en/functions.arguments.php#functions.arguments.type-declaration.strict
https://en.wikipedia.org/wiki/XML_external_entity_attack
https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Prevention_Cheat_Sheet#PHP
https://secure.php.net/manual/de/function.libxml-disable-entity-loader.php
https://secure.php.net/manual/en/book.libxml.php
https://crypto.stackexchange.com/questions/43272/why-is-writing-your-own-encryption-discouraged
https://security.stackexchange.com/questions/18197/why-shouldnt-we-roll-our-own
https://motherboard.vice.com/en_us/article/wnx8nq/why-you-dont-roll-your-own-crypto

✔ Integrate Security Scanners Into Your CI Pipeline
Security scanners can help to detect questionable code and code that contains obvious
security defects. Continuous Integration (CI) tools can use these scanners to test your
code and fail the build if the scanner meets or surpasses acceptable thresholds.
 
Read more:

• ircmaxell/php-security-scanner

• PHP Quality Assurance

✔ Keep All Dependencies Up to Date
Most PHP code relies on external, third-party dependencies. However, these need to be
kept up to date, wherever possible, to ensure that any bug and security fixes are available
to your code. Ensure you’re using Composer as your dependency manager and keep up to
date with all of your dependencies.

Composer basic usage

✔ Invalidate Sessions When Required
After any significant application state change, such as a password change, password
update, or security errors, expire and destroy the session.
 
Read more:

• Session management in Laravel
• PHP Session Security Best Practices

✔ Never Store Sensitive Data in Session
No sensitive data—ideally only a minimum of data or the session id—should ever be
stored in a session.
 
Read more:

• Session hijacking attack

!7

https://github.com/ircmaxell/php-security-scanner
https://phpqa.io/index.html
https://getcomposer.org/doc/01-basic-usage.md
https://laravel.com/docs/5.8/session
https://github.com/sobstel/sesshin/wiki/PHP-Session-Security---Best-Practices
https://www.owasp.org/index.php/Session_hijacking_attack

• Session fixation attack
• OWASP Session Management Cheat Sheet

✔ Never Store Sessions in a Shared Area
It has been common, when using shared hosting providers, for PHP to be automatically
configured to store sessions on the filesystem, in the same directory. Never do this.
Always check your configuration and store session information in a private location,
accessible only by your application.
 
Read more:

• Session management in Laravel
• Shared Hosting: PHP Session Security
• Custom Session Handlers
• Storing sessions in Memcache

✔ Use Secure Session Settings
When using sessions make sure that you configure them to be as secure as possible to
prevent as many attacks as you practically can. This includes locking a session to a domain
or IP address, don’t permanently store cookies, use secure cookies (sent over HTTPS),
use large session `sid_length` and `sid_bits_per_character` values. Laravel comes with
secure configurations out-of-the-box so make sure you read the documentation and
don’t try to innovate on that part.
 
Read more:

• Session configurations
• https://secure.php.net/manual/en/session.security.ini.php
• Session Management Basics

✔ Don’t Cache Sensitive Data
When you cache data to speed up your application, such as database requests, ensure
that sensitive data isn’t cached.

!8

https://www.owasp.org/index.php/Session_fixation
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
https://laravel.com/docs/5.8/session
https://websec.io/2012/08/24/Shared-Hosting-PHP-Session-Security.html
https://secure.php.net/manual/en/session.customhandler.php
https://secure.php.net/manual/en/memcached.sessions.php
https://laravel.com/docs/5.8/session#configuration
https://secure.php.net/manual/en/session.security.ini.php
https://secure.php.net/manual/en/features.session.security.management.php

 
Read more:

• Best practice for caching sensitive data

✔ Store Passwords Using Strong Hashing Functions
Ensure that all passwords and other potentially sensitive data are hashed, using robust
hashing functions such as bcrypt. Don’t use weak hashing functions, such as MD5 and
SHA1. Laravel comes with a native hash mechanism using Bcrypt and Argon2. Use them!
 
Read more:

• Hashing in Laravel

• Use Bcrypt or Scrypt Instead of SHA* for Your Passwords, Please!

• The Dangers of Weak Hashes

✔ Use a Reputable ACL or RBAC Library
To ensure that access to sensitive data is both authenticated and authorized, use mature
ACL (Access Control Library) and RBAC (Role Based Access Control) packages.
 
Read more:

• Two Best Laravel Packages to Manage Roles/Permissions

• Laravel Authentication

✔ Use a Package Vulnerability Scanner
As modern PHP applications use a wide variety of external dependencies, you need to be
sure that you’re not using any with known vulnerabilities. To do that, ensure that you’re
regularly scanning your source code with a vulnerability scanner.
 
Read more:

• Roave Security Advisories
• FriendsOfPHP/security-advisories
• SensioLabs Security Advisories Checker
• retire.js

!9

https://security.stackexchange.com/questions/87144/best-practice-for-caching-sensitive-data
https://laravel.com/docs/5.8/hashing
https://rietta.com/blog/2016/02/05/bcrypt-not-sha-for-passwords/
https://www.sans.org/reading-room/whitepapers/authentication/dangers-weak-hashes-34412
https://laravel-news.com/two-best-roles-permissions-packages
https://laravel.com/docs/5.6/authentication
https://github.com/Roave/SecurityAdvisories
https://github.com/FriendsOfPHP/security-advisories
https://security.sensiolabs.org/
https://github.com/retirejs/retire.js/

• AuditJS

✔ Always Perform Context-Aware Content Escaping
Whether your outputting information in an HTML template, in CSS, or in JavaScript,
avoid exposing your users to CSRF (Cross Site Request Forgery) and XSS (Cross Site
Scripting) attacks by performing context-aware content escaping.
 
Read more:

• Blade Templates

• Safer PHP output

• Twig escape method

• XSS (Cross Site Scripting) Prevention Cheat Sheet

✔ Deprecate Features and Libraries When They’re No Longer Used
Stay abreast of the packages and language features that you’re using. If a language
feature planned to be deprecated, or a third-party package becomes abandoned, then
start planning to replace it with an alternative.
 
Read more:

• sensiolabs-de/deprecation-detector
• samsonasik/is-deprecated
• How to Deprecate PHP Package Without Leaving Anyone Behind

✔ Never Display PHP Errors and Exceptions in Production
While errors, warnings, and exceptions are helpful during development, if displayed in
production or any other public-facing environment, they may expose sensitive
information or intellectual property. Ensure that this information is logged internally, and
not exposed publicly.
 
Read more:

• Error Handling in Laravel

!10

https://www.npmjs.com/package/auditjs
https://laravel.com/docs/5.8/blade#displaying-data
https://www.inanimatt.com/php-output-escaping.html
https://twig.symfony.com/doc/2.x/filters/escape.html
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://github.com/sensiolabs-de/deprecation-detector
https://github.com/samsonasik/IsDeprecated
https://www.tomasvotruba.cz/blog/2017/07/03/how-to-deprecate-php-package-without-leaving-anyone-behind/
https://laravel.com/docs/5.6/errors

✔ Disable Unsafe and Unrequired Functionality
Some PHP installations can be preconfigured with unsafe and unrequired functionality
already enabled. Ensure that you review your PHP configuration and `phpinfo()` output
for any unsafe settings and disable or limit them.
 
Read more:

• OWASP PHP Configuration Cheat Sheet

✔ Filter File Uploads
If malicious files can be uploaded and executed by users, then the application, its data, or
the supporting server(s) can be compromised. Ensure that PHP’s file upload
configuration is correctly configured to avoid these attacks from occurring.
 
Read more:

• OWASP Unrestricted File Upload
• Laravel File Uploads
• How to securely upload files with PHP
• How to Securely Allow Users to Upload Files

✔ Disable or Limit Program Execution Functionality
Program execution functionality, such as exec, passthru, shell_exec, and system, can leave
open the possibility for users to be able to execute arbitrary code on your system and
shell injection attacks. Disable this functionality if it’s not explicitly needed.
 
Read more:

• Program execution Functions
• Shell injection attacks
• PHP disable_functions

!11

https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/PHP_Configuration_Cheat_Sheet.md
https://www.owasp.org/index.php/Unrestricted_File_Upload
https://laravel.com/docs/5.8/filesystem#file-uploads
https://php.earth/docs/security/uploading
https://paragonie.com/blog/2015/10/how-securely-allow-users-upload-files
https://secure.php.net/manual/en/ref.exec.php
https://www.owasp.org/index.php/PHP_Security_Cheat_Sheet#Shell_Injection
http://php.net/manual/en/ini.core.php#ini.disable-functions

INFRASTRUCTURE

✔ Connect to Remote Services With TLS or Public Keys
When accessing any database, server, or remote services, such as _Redis_, _Beanstalkd_,
or _Memcached_, always do so using TLS or public keys. Doing so ensures that only
authenticated access is allowed and that requests and responses are encrypted, and data
is not transmitted in the clear. By default Laravel is served over plain HTTP, so make sure
you use the secure command in Valet.
 
Read more:

• Securing sites with TLS

• Public Key Infrastructure and SSL/TLS Encryption

• What is SSL, TLS and HTTPS?

• SSL vs. TLS - What’s the Difference?

✔ Check Your SSL / TLS Configurations
Ensure that your server’s SSL/TLS configuration is up to date and correctly configured,
and isn’t using weak ciphers, outdated versions of TLS, valid security certificates without
weak keys, etc, by scanning it regularly.
 
Read more:

• SSL Labs
• Observatory by Mozilla

✔ Renew Your Certificates On Time
Using SSL certificates is essential to encrypting your web site or application’s traffic with
HTTPS. However, they do expire. Ensure that you’re updating your certificates before
they expire.
 
Read more:

• Get Alerts For Expiring SSL Certificates

!12

https://laravel.com/docs/5.8/valet#securing-sites
https://www.digitalocean.com/community/tutorials/7-security-measures-to-protect-your-servers#public-key-infrastructure-and-ssltls-encryption
https://www.websecurity.symantec.com/security-topics/what-is-ssl-tls-https
https://www.globalsign.com/en/blog/ssl-vs-tls-difference/
https://www.ssllabs.com/
https://observatory.mozilla.org/
https://serverlesscode.com/post/ssl-expiration-alerts-with-lambda/

• Free and Auto-Renewing SSL Certificates: Letsencrypt Quick Setup (2017
Edition)

✔ Rate Limit Requests to Prevent DDoS Attacks
To stop users attempting to perform brute force login attacks and overwhelm your forms,
use tools such as Fail2Ban to throttle requests to acceptable levels.
 
Read more:

• Fail2Ban for Laravel
• Fail2ban
• How To Protect SSH with Fail2Ban on Ubuntu 14.04

✔ Log All The Things
Regardless of whether you’re logging failed login attempts, password resets, or debugging
information, make sure that you’re logging, and with an easy to use, and mature package,
such as Monolog.
 
Read more:

• Monolog

• Laravel Logging Basics

✔ Do not send sensitive information in headers
By default Laravel will send its version number in HTTP headers. Double check your
headers to ensure that you’re not sending sensitive information.
 
Read more:

• Hide PHP and Apache informations from HTTP headers

!13

https://www.imagescape.com/blog/2017/11/27/free-and-auto-renewing-ssl-certificates-letsencrypt-quick-setup-2017-edition/
https://www.imagescape.com/blog/2017/11/27/free-and-auto-renewing-ssl-certificates-letsencrypt-quick-setup-2017-edition/
https://gist.github.com/joecampo/848178ab5c18aada0eab
https://www.digitalocean.com/community/tutorials/how-to-protect-ssh-with-fail2ban-on-ubuntu-14-04
https://github.com/Seldaek/monolog
https://laravel.com/docs/5.8/logging
https://tecadmin.net/basic-security-tips-hide-apachephp-information/

✔ Do Not Store Sensitive Data In Configuration Files
Just like you shouldn’t store sensitive data in cache entries, you also should not store
sensitive data in configuration files. This includes ssh keys, access credentials, and API
tokens. Store them in environment variables instead.
 
Read more:

• The Twelve-Factor App

• PHP dotenv

✔ Make Requests Over HTTPS Wherever Possible
To avoid Man in the Middle attacks, to protect the integrity of your site, and privacy of
your users, you need to make all requests over HTTPS—especially requests involving
sensitive data, such as logins, password and account changes.
 
Read more:

• Why HTTPS Matters
• Let’s Encrypt
• Apache SSL/TLS Strong Encryption: How-To
• Configuring NGINX HTTPS servers
• Docker, Traefik, and Let’s Encrypt

!14

https://12factor.net/
https://github.com/vlucas/phpdotenv
https://developers.google.com/web/fundamentals/security/encrypt-in-transit/why-https
https://letsencrypt.org/
https://httpd.apache.org/docs/2.4/ssl/ssl_howto.html
https://nginx.org/en/docs/http/configuring_https_servers.html
https://docs.traefik.io/user-guide/docker-and-lets-encrypt/

PROTECTION

✔ Send All Available Security Headers
There are several security headers that you can use to make your websites and web-based
applications more secure, for minimal effort. These include HSTS, X-XSS-Protection, X-
Frame-Options, X-Content-Type-Options, and a Content Security Policy. Ensure that
they’re being configured correctly and sent in your request responses.
 
Read more:

• Use these Five Security Headers To Create More Secure Applications
• SecurityHeaders
• PHP header function
• Hardening Your HTTP Security Headers

✔ Have a Content Security Policy
Whether you have a one page, static website, a large static website, or a sophisticated
web-based application, implement a Content Security Policy (CSP). It helps to mitigate a
range of common attack vectors, such as XSS.

Read more:
• Content Security Policy (CSP) via MDN web docs

• Content Security Policy (CSP) via the Google Chrome extensions documentation

• CSP Evaluator

• Content Security Policy (CSP) Validator

• Easily add and manage a CSP with Sqreen

✔ Protect your users against account takeovers
Credential stuffing or brute force attacks are easy to setup. You should make sure your
users are protected against account takeovers.

!15

https://matthewsetter.com/five-security-headers/
https://securityheaders.com/
https://secure.php.net/manual/en/function.header.php
https://www.keycdn.com/blog/http-security-headers/
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://developer.chrome.com/extensions/contentSecurityPolicy
https://csp-evaluator.withgoogle.com/
https://cspvalidator.org/#url=https://cspvalidator.org/
https://www.sqreen.com/?utm_medium=social-owned&utm_source=whitepaper&utm_campaign=Whitepaper%20-%20Laravel%20Security%20Checklist

Learn more:
• Sqreen

• Blocking Bruteforce attacks - OWASP

✔ Monitor your application security
Monitor your application security for suspicious behaviors and attacks. Knowing when
your application is starting to get attacked is key to protect it before it's too late.

• Monitor your Laravel App security

✔ Protect your sensitive data in real-time
Code vulnerabilities will always exist. Make sure you have a security solution in place that
detects and blocks OWASP attacks but also business logic threats.

• Protect your PHP app

!16

XXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXX

https://www.sqreen.com/?utm_medium=social-owned&utm_source=whitepaper&utm_campaign=Whitepaper%20-%20Laravel%20Security%20Checklist
https://www.sqreen.com/?utm_medium=social-owned&utm_source=whitepaper&utm_campaign=Whitepaper%20-%20Laravel%20Security%20Checklist
https://www.sqreen.com/?utm_medium=social-owned&utm_source=whitepaper&utm_campaign=Whitepaper%20-%20Laravel%20Security%20Checklist
https://www.owasp.org/index.php/Blocking_Brute_Force_Attacks
https://www.sqreen.com/?utm_medium=social-owned&utm_source=whitepaper&utm_campaign=Whitepaper%20-%20Laravel%20Security%20Checklist
https://www.sqreen.io/?utm_medium=social-owned&utm_source=whitepaper&utm_campaign=Whitepaper%20-%20PHP%20Security%20Checklist

www.sqreen.com

